## 2016 EOS/ESD Symposium

# Die Attached and Wire Bonder ESD Risk Assessment

Technical Presentation #1 18th November 2016, Xi'an, China

吴耀汉Y.H. Goh, 黄荣辉 W.F. Wong, Mohamed Farhan bin Azmi, Mohamed Ibrahim s/o Badruddin, 许良海博士Dr. L.H. Koh

Everfeed Technology Pte Ltd



## **Outline**

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Discussion
- 5. Conclusion
- 6. References





#### 1. Introduction

- Automated Handling Equipment (AHE)
  - Compliance verification
    - ANSI/ESD S20.20
    - ANSI/ESD S6.1
    - ESD Occurrences
- AHE Audits
  - ANSI/ESD SP10.1
- Not enough
  - Need additional assessments



Resistance Measurement in <u>Die Attach Machine</u>

Measure Resistance/Volt



- Compare against
  - ANSI/ESD S20.20
  - ANSI/ESD S6.1
  - ANSI/ESD SP10.1
- Investigate further whenever possible



- Resistance Measurement in Die Attach Machine
  - Parts Measured



- CPG to AC ground
- Unloading magazine
- Pick up head
- Input pusher
- Tile pick up arm

Resistance Measurement in Wire Bond Machine

Measure Resistance/Volt









- ANSI/ESD SP10.1
- Investigate further whenever possible



- Resistance Measurement in Wire Bond Machine
  - Parts Measured





- Machine's loading area
- Gold thread holder
- ESDS clamp
- Input loader tile pusher
- Input loader conveyor belt

- Voltage Measurement
  - According to ANSI/ESD S20.20
    - insulators within 1 inch of any ESDS
    - Control limit < +/-125 volts</li>



- Contact and non-contact voltmeters used
- Stationary and moving parts that exceeded the resistance limits also checked for compliance



#### 3. Results

- Resistance Measurement in DA
  - Red indicates exceeding the required resistance
  - Input pusher low ESD risk

| Measurement point  | Resistance (Ω) | Requirement | ESD<br>Risk |
|--------------------|----------------|-------------|-------------|
| Machine CPG        | <1Ω            | <1Ω         | Low         |
| Magazine to Ground | 1 x 10e11Ω     | <1 x 10e6Ω  | High        |
| Pick up Head       | 2.5 x 10e11Ω   | <1 x 10e6Ω  | High        |
| Input Pusher       | 2.2 x10e11Ω    | <1 x 10e6Ω  | High        |
| Tile Pick Up Arm   | 1.7Ω           | <1 x 10e6Ω  | Low         |



#### 3. Results

- Resistance Measurement in WB
  - Red indicates exceeding the required resistance
  - Input loader tile pusher low ESD risk

| Measurement point             | Resistance (Ω) | Requirement | ESD<br>Risk |
|-------------------------------|----------------|-------------|-------------|
| Loading Area                  | <1Ω            | <1Ω         | Low         |
| Gold Thread Holder            | 1 x 10e4Ω      | <1 x 10e6Ω  | Low         |
| Tile Clamp                    | <1Ω            | <1 x 10e6Ω  | Low         |
| Input Loader Tile<br>Pusher   | 9.8 x10e10Ω    | <1 x 10e6Ω  | High        |
| Input Loader<br>Conveyor Belt | 2.5 x10e5Ω     | <1 x 10e6Ω  | Low         |

#### 3. Results

- Voltage Measurement
  - The ESD risk of input pusher and input loader tile pusher were evaluated to be low ESD risk as the tribo-charged voltage were below the control limit

|                       | Part                            | Tribocharged (V) | Control<br>Limit (V) | ESD<br>Risk |
|-----------------------|---------------------------------|------------------|----------------------|-------------|
|                       | Insulative Strip<br>on Magazine | >200             | <125                 | High        |
| $DA \longrightarrow $ | Input Pusher                    | <-60             | <125                 | Low         |
| WB ──                 | Input loader tile<br>pusher     | <20              | <125                 | Low         |



### 3. Results – Pick & Place RTG



## 3. Results - HBM Modelling





$$v(t) = V_o e^{-t/RC}$$

$$v(t) = V_o e^{-t/RC}$$
$$i(t) = I_o e^{-t/RC}$$

$$\tau$$
=RC

5τ @ 0.7% Vo

## 3. Results - HBM Modelling



# 3. Results – MM Modelling



# 3. Results – MM Modelling



## 3. Results – HBM vs MM Capacitance



## 3. Results – HBM vs MM Capacitance



#### 4. Discussion

 Some resistance values of certain parts in DA and WB did not comply with ANSI/ESD S20.20 and ANSI/ESD S6.1

 After further assessment was made, some of the parts do not pose a high ESD risk due to a low tribo-

charged value.

RISK GOVERNANCE DASHBOARD

#### 4. Discussion

- Using model characteristics of both HBM or MM, static measurement of RTG <=1.0E6 ohm (ANSI/ESD SP10.1) is typically 2 orders below the assumed AHE cycle time of 0.2 second.
- For capacitance variability, RTG <=1.0E6 ohm is good for capacitance <10-8F</li>

#### 4. Discussion

- This additional check was not proposed in ANSI/ESD SP10.1. However, it would be beneficial in assessing the ESD risk the machine part poses
- Certain changes are proposed to help the DA and WB machine comply with the requirements of ANSI/ESD S20.20 and ANSI/ESD S6.1

#### 5. Conclusion

- A measurement of tribo-charged voltage of insulative parts of the machine was proposed as an additional check which will help to assess the ESD risk more thoroughly.
- Recommendations were also proposed to aid in maintaining the AHE so that it complied with the requirements of ANSI/ESD S20.20 and ANSI/ESD S6.1.

#### 5. Conclusion

 Further best practices can be proposed to improve on the current ANSI/ESD SP10.1 so that it can be more comprehensive in assessing ESD risk assessment in AHE.



#### 6. References

- [1] E. S. D. Association, "ANSI/ESD S20.20-2014," in Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices), ed. Rome, NY: ESD Association, 2014, p. 13.
- [2] E. S. D. Association, "ANSI/ESD S6.1-2009 Grounding," ed: ESD Association, 2009, p. 20.
- [3] E. S. D. Association, "ANSI/ESD SP10.1-2000 Automated Handling Equipment (AHE)," ed. 7900 Turin Road, Bldg 3 Rome, NY 13440-2069: ESD Association, 2000, p. 15.